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Abstract

Beginning from a state of hydrostatic equilibrium, in which a heavy gas rests atop a

light gas in a constant gravitational field, Rayleigh-Taylor instability at the interface

will launch a shock wave into the upper fluid. The rising bubbles of lighter fluid

act like pistons, compressing the heavier fluid ahead of the fronts and generating

shocklets. These shocklets coalesce in multidimensional fashion into a strong normal

shock, which increases in strength as it propagates upwards. Large-eddy simulations

demonstrate that the shock Mach number increases faster in three dimensions than

it does in two dimensions. The generation of shocks via Rayleigh-Taylor instability

could have profound implications for astrophysical flows.

The quest to find a detonation mechanism for type Ia supernovae has

spurred many investigations of Rayleigh-Taylor (R-T) unstable flame fronts

[1, 2, 3, 4, 5, 6, 7, 8, 9]. However, the vast majority of R-T simulations

and experiments to date have been performed in the incompressible or low

Mach number regimes. Relatively little research has been performed on the

effects of compressibility and hydrostatic density gradients on the late-time

development of R-T turbulence. Mellado et al. [10] studied compressibility ef-

fects in R-T turbulence in an “unbounded” domain and concluded that “the

Rayleigh-Taylor problem does not have significant intrinsic compressibility ef-
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fects.” Their research has reinforced the perception that R-T instability is a

low Mach number phenomenon. The purpose of this Brief Communication is

to demonstrate that R-T instability does in fact exhibit strong compressibility

effects, as evidenced by the formation of shock waves in the upper fluid.

R-T instability between two ideal gases can be described by the following

equations:

∂ρYi

∂t
+∇ · (ρYiu + Ji) = 0 , i = 1, 2 , (1)

∂ρu

∂t
+∇ · [ρuu + pδ − τ ] = ρg , (2)

∂E

∂t
+∇ · [(E + p)u− τ · u + q] = ρg · u , (3)

p = ρRT , (4)

T = (γ − 1)e/R , (5)

R = Ro

2∑

i=1

Yi

Wi
, (6)

where ρ is density, Yi is the mass fraction of species i, u = (u, v, w) is velocity,

Ji is a diffusive mass flux, p is pressure, δ is the unit tensor, τ is the viscous

stress tensor, g = (0, 0, g) is gravity, E ≡ ρ(e+u ·u/2) is total energy (with e

being internal energy), q is the heat conduction flux, γ is the ratio of specific

heats (assumed to be the same for both gases), T is temperature, R is the

apparent gas constant, Ro is the universal gas constant and Wi is a species

molecular weight. The viscous stress tensor is

τ = µ(2S) + (β − 2

3
µ)(∇ · u)δ , (7)

where µ is dynamic (shear) viscosity, β is bulk viscosity and S is the symmetric
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strain rate tensor,

S =
1

2
[∇u + (∇u)†] , (8)

where (∇u)† denotes the transpose of the dyadic ∇u. The conductive heat

flux vector is described by Fourier’s law,

q = −κ∇T , (9)

where κ is thermal conductivity. The diffusive (Fickian) mass fluxes are

Ji = −ρD∇Yi , (10)

where D is the diffusion coefficient. We solve equations (1)-(10) using a tenth-

order compact scheme for spatial derivatives, combined with a fourth-order

Runge-Kutta integrator. In order to confine dissipation effects to the small-

est possible scales, grid-dependent models are employed for µ, β, κ and D.

Complete details of the numerical method and subgrid-scale models, includ-

ing verification and validation tests, have previously been described [11].

In our large-eddy simulations (LES) of R-T instability, Xenon serves as

the upper (heavy) fluid and Krypton, Argon or Neon serves as the lower (light)

fluid. The initial mass fractions are prescribed using a hyperbolic tangent

profile in z with a Gaussian spectrum of perturbations imposed at the interface

[12]. The flows are initialized with isothermal fluids in hydrostatic equilibrium;

i.e., we solve

dp

dz
= ρg, (11)

together with (4), to obtain p and ρ. In all simulations, gravity is g = −980 cm/s2,
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the initial temperature is To = 300 K and the initial pressure at the top of the

domain is po = 106 Ba . The boundary conditions are periodic in x and y with

slip walls on the top and bottom z boundaries. As a test of the hydrostatic

initialization and wall boundary conditions, simulations were conducted with

no perturbations to confirm that the flow remains undisturbed.

Figure 1 depicts a time sequence of the local Mach number from a 2D

LES with Argon used for the light fluid. The local Mach number is defined as

Fig. 1. Local Mach number from a 256 × 768 point simulation of compressible

R-T instability. The upper fluid is Xenon and the lower fluid is Argon. The RGB

color map ranges from 0 (blue) to 1 (red). The flow domain is 15.1× 45.4 km (the

full vertical extent of the computational domain somewhat exceeds that shown).

Simulation times from left to right are: t=40, 80, 110 & 130 s.
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Ml(x, t) ≡ ||u||
c

, (12)

where c =
√

γRT is the local speed of sound. In the first image, only the mix-

ing region is visible, since that is the only place where vorticity gets deposited.

In the second image we begin to see compression waves emanating from the

bubbles and coalescing further up in the Xenon. In the third image, curved

shocklets are clearly visible above the mixing region and a main shock has

formed at higher elevation. In the fourth image, the post-shock Mach number

has surpassed the maximum Mach number in the mixing region and distinct

shocklets fill the space between the mixing layer and the main shock. The

Argon bubbles appear to act like pistons, sending compression waves into the

Xenon, which catch up to previous waves, thus reinforcing the shocklets. The

shocklets then combine multidimensionaly with their neighbors to form the

main shock. This process is driven, in part, by expansion of the bubbles of

light fluid as they rise in altitude. The process bears some resemblance to a

Deflagration to Detonation Transition (DDT), where acoustic waves emanat-

ing from the reaction front combine in multidimensional fashion to form a

shock. Shocklets do not form underneath the mixing region because the spikes

of heavy fluid are compressed as they descend, thus sending expansion waves

into the lower fluid. Furthermore, the speed of sound is larger in the lower fluid

than in the upper fluid. Figure 2 shows flow features from a 3D simulation

after the main shock has formed.

In constructing a model of the shock formation process, we can make

direct use of the piston analogy. Consider the canonical compression wave

problem wherein a piston in a 1D tube is given a constant acceleration, a [13].

The acceleration may be thought of as a series of infinitesimal velocity jumps,
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Fig. 2. Three-dimensional (256 × 256 × 768) simulation of compressible Rayleigh–

Taylor instability. The top fluid is Xenon and the bottom fluid is Argon. The lower

isovolume is the mixing region, where blue and red correspond to Xenon mass frac-

tions of 0.2 and 0.8, respectively. The upper isovolume is the main shock, illustrated

here by 1.04 < Ml < 1.10. The back planes and upper isovolume are both colored

by the local Mach number, where blue is 0 and red is 1.

which produce finite compression waves emanating from the piston. The first

wave originates from the piston at t = 0 and travels at the sound speed of the

undisturbed fluid, c0. The second wave begins at t = dt and travels at c1 +du,
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where du is the piston velocity after the first jump and c1 is the sound speed

behind the first wave. Simple compression waves satisfy the jump relation [14],

u1 −
2

γ − 1
c1 = u0 −

2

γ − 1
c0 , (13)

which for the present case reduces to

c1 = c0 +
γ − 1

2
du. (14)

The distance at which the second wave overtakes the first wave is

Lp =
2c2

0

a(γ + 1)
, (15)

where a = du/dt. This intersection distance for the characteristics corresponds

to the location at which the shock begins to form.

The relevant acceleration for R-T instability, which appears both in Lin-

ear Stability Theory [15] and in the similarity equation for the late-time growth

rate [16, 17], is Ag, where

A =
ρ2 − ρ1

ρ2 + ρ1
, (16)

is the Atwood number. For compressible fluids, ρ1 and ρ2 are taken, respec-

tively, as the local minimum and maximum of the density field on either side

of the fluid interface. For the ideal gases used in the present work,

A =
W2 −W1

W2 + W1
. (17)

Setting a = Ag in (15) yields

Ls =
2c2

Ag(γ + 1)
(18)
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as the relevant length scale for shock formation, where c is the sound speed in

the upper fluid.

In order to test whether (18) is an effective gauge of the shock formation

height, we performed a set of 3D simulations using Atwood numbers of 0.221,

0.533 and 0.733. These Atwood numbers correspond respectively to Krypton,

Argon and Neon as the light fluid. All three simulations were performed on

a 12.8 km × 12.8 km × 51.1 km domain using 128 × 128 × 512 grid points.

The Gaussian perturbation spectrum of each simulation was centered about

mode number 16. The initial fluid interface was placed one quarter of the

distance from the bottom boundary to the top boundary in order to allow

sufficient room for the shock to form in the Xenon. Except for the lower fluid,

the simulations were all identical. Additionally, we conducted a corresponding

set of 2D simulations (same perturbations and fluids etc.) in order to assess

the effects of dimensionality on the shock formation process.

We define the shock location, zs, as the z-location where 〈T 〉 reaches

its maximum. Here we use angle brackets to denote a horizontal (x, y) aver-

age. Figure 3 displays profiles of 〈T 〉 from the 3D Argon simulation at three

different nondimensional times, where

ts ≡
c

Ag
. (19)

The temperature profiles indicate that the main shock forms in the region

1 < z/Ls < 3 and then rapidly increases in strength as it propagates down the

hydrostatic density gradient. The Mach number of the shock, Ms, is evaluated
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Fig. 3. Temperature profile at various times for the 3D Argon case.

from the temperature jump condition

〈T 〉max

To
=

[

1 +
2γ

γ + 1
(M2

s − 1)

] [
2 + (γ − 1)M2

s

(γ + 1)M2
s

]

. (20)

This jump condition provides a clear measure of shock strength and location,

since T is initially constant. Shock Mach numbers versus height are plotted

in Fig. 4 for all six simulations. In every case, Ms → 1 as zs → Ls; hence, the

main shock waves all begin to form at approximately a distance Ls above the

interface. It is also apparent that the Argon and Neon simulations produce

similar shocks, whereas the Krypton case produces a somewhat weaker shock.

Additional tests (not shown) at various Atwood numbers indicate that for

A >∼ 0.5 the Mach number curves nearly collapse; whereas, for lower Atwood

numbers the curves gradually drop off. It is noteworthy that the 2D simulations

all produce weaker shocks than their 3D counterparts. This may be a result

of increased interaction among the shocklets in 3D compared to 2D, or it may

be due to differences in 2D and 3D growth rates of the mixing layer [18].
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Fig. 4. Shock Mach number as a function of the nondimensional distance above the

shock formation height.

Given the robust manner in which R-T instability produces shock waves,

it is natural to ask why this phenomenon was not observed in earlier studies. In

order to answer this question, consider the turbulent Mach number as defined

by Mellado et al. [10],

Mt(z, t) ≡
〈||u||〉
〈c〉 . (21)

This Mach number is plotted in Fig. 5 at late time for the 3D Argon case. The

Atwood number for this case (A = 0.533) is close to the A = 0.5 simulations of

Mellado et al. Mellado et al. used Mt(0, t) as a gauge of compressibility effects.

In their simulations, the distance from the interface to the top boundary of the

domain was 2.8Ls. From Fig. 5 it is apparent that this distance is too short

to capture the true maximum of Mt. As a further illustration, Mt(0, t) as well

as the maximum value of Mt over all z are plotted in Fig. 6. At t = 2.2ts, the

Mach number just behind the shock overtakes the Mach number on the center
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Fig. 5. Turbulent Mach number versus height at t/ts = 3.9 for the 3D Argon case.
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Fig. 6. Temporal evolution of the turbulent Mach number for the 3D Argon case.

plane and the two curves rapidly diverge. The turbulent Mach number on the

center plane does not provide a reliable measure of compressibility effects at

late time.
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Finally, the present results raise the question as to whether R-T shocks

could provide a detonation mechanism for type Ia supernovae. Relevant para-

meters for an exploding white dwarf are: c ≈ 7 × 108 cm/s, g ≈ 1010 cm/s2

and A ≈ 0.2; hence, a rough estimate of the shock formation length is Ls ≈

2500 km. This is approximately the radius of the expanded star, which leaves

some doubt as to whether the shock would be able to form. Thus far, our

scoping simulations using a Helmholtz equation of state [19] have failed to

produce a shock of sufficient strength to ignite the carbon.
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